1.Solve the following system of equtions
2.Find all such functions f : R -> R that satisfy
3.Prove that if a,x,y,z are real numbers such that
4.Let f1, f2, f3,...be the elements of the {Fibonacci sequence}(i.e., f1 = f2 = 1 a fn+2 = fn+1 + fn for n N). Prove that if the polynomial P(x) of degree 998 satisfies P(k) = fk for k = 1000, 1001,..., 1998 , then P(1999) = f1999 - 1.
5.Given n N find the minimum value of the expression
Problems were choosen by Juraj Foldes (1, 2, 3, 5), Eugen Kovac (2, 4), Vladimir Marko (2)
Loren C. Larson, Problem solving through problems, Springer-Verlag,New York, 1983.
J.\ Sedivy: Shodna zobrazeni v~konstruktivnich ulohach, SMM 3 [in Czech]
M.\ Sisler, J.\ Jarnik: O~funkcich, SMM 4 [in Czech]
J.\ Hornik: Ulohy o~maximech a~minimech funcki, SMM 17 [in Czech]
B.\ Budinsky, S.\ Smakal: Goniometricke funkce, SMM 20 [in Czech]