The Strong Perfect Graph Conjecture

Veronika Bachratá, Ján Mazák

Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

March 11, 2010
Question

For which graphs $\chi(G) = \omega(G)$?
Question

For which graphs $\chi(G) = \omega(G)$?

Definition

A graph G is called **perfect** if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

The complement of a perfect graph is perfect.

Examples of perfect graphs:
- cliques
- bipartite graphs (and their complements)
- line graphs of bipartite graphs (and their complements)
Question
For which graphs $\chi(G) = \omega(G)$?

Definition
A graph G is called perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

The complement of a perfect graph is perfect.
Question

For which graphs \(\chi(G) = \omega(G) \)?

Definition

A graph \(G \) is called *perfect* if \(\chi(H) = \omega(H) \) for each induced subgraph \(H \) of \(G \).

The complement of a perfect graph is perfect.

Examples of perfect graphs:
- cliques
- bipartite graphs (and their complements)
- line graphs of bipartite graphs (and their complements)
Definition

- an *odd hole* – an odd cycle with at least four vertices
- an *odd anti-hole* – the complement of an odd hole

A graph is a Berge graph if it contains neither an odd hole nor an odd anti-hole as an induced subgraph.

The Strong Perfect Graph Conjecture (SPGC)

A graph is perfect if and only if it is a Berge graph.
Berge Graphs

Definition

- an **odd hole** – an odd cycle with at least four vertices
- an **odd anti-hole** – the complement of an odd hole

Definition

A graph is a **Berge graph** if it contains neither an odd hole nor an odd anti-hole as an induced subgraph.
Berge Graphs

Definition
- an *odd hole* – an odd cycle with at least four vertices
- an *odd anti-hole* – the complement of an odd hole

Definition
A graph is a *Berge graph* if it contains neither an odd hole nor an odd anti-hole as an induced subgraph.

The Strong Perfect Graph Conjecture (SPGC)
A graph is perfect if and only if it is a Berge graph.
Definition

Triangulated graph – every cycle (length ≥ 4) has a chord.
Triangulated graphs

Definition

- **Triangulated graph** – every cycle (length ≥ 4) has a chord.
- **Clique cutset** – a cutset formed by a clique.

Theorem (Dirac)

A triangulated graph is either a clique or has a clique cutset.

Every triangulated graph is perfect.
Definition

- *Triangulated graph* – every cycle (length \(\geq 4 \)) has a chord.
- *Clique cutset* – a cutset formed by a clique.

Theorem (Dirac)

A triangulated graph is either a clique or has a clique cutset.
Triangulated graphs

Definition
- *Triangulated graph* – every cycle (length ≥ 4) has a chord.
- *Clique cutset* – a cutset formed by a clique.

Theorem (Dirac)
A triangulated graph is either a clique or has a clique cutset.

Every triangulated graph is perfect.
The join $G + H$ of two graphs G and H: each vertex of G is joined to each vertex of H. The join $G + H$ is perfect if and only if both G and H are perfect.
The **join** $G + H$ of two graphs G and H: each vertex of G is joined to each vertex of H.

The join $G + H$ is perfect \iff both G and H are perfect.
Joins

Definition
The *join* $G + H$ of two graphs G and H:
- each vertex of G is joined to each vertex of H.

The join $G + H$ is perfect \iff both G and H are perfect.

Definition
Let A, B be a partition of $V(G)$;
- A_1, A_2: disjoint subsets of A,
- B_1, B_2: disjoint subsets of B.
If each vertex of A_i is joined to each vertex of B_i and there are no other edges between A and B then G admits a 2-join.

Veronika Bachratá, Ján Mazák
Perfect Graphs
The join $G + H$ of two graphs G and H: each vertex of G is joined to each vertex of H.

The join $G + H$ is perfect \iff both G and H are perfect.

Let A, B be a partition of $V(G)$; A_1, A_2: disjoint subsets of A, B_1, B_2: disjoint subsets of B.

If each vertex of A_i is joined to each vertex of B_j and there are no other edges between A and B then G admits a 2-join.

The 2-join of two perfect graphs is perfect.
Definition

A *minimal imperfect graph* – a graph that is not perfect but all its induced subgraphs are.
Definition

A *minimal imperfect graph* – a graph that is not perfect but all its induced subgraphs are.

A counterexample to SPGC: a Berge graph that is not perfect. A smallest counterexample must be minimal imperfect.
Smallest counterexample and decompositions

Definition

A *minimal imperfect graph* – a graph that is not perfect but all its induced subgraphs are.

A counterexample to SPGC: a Berge graph that is not perfect. A smallest counterexample must be minimal imperfect.

A smallest counterexample does not admit a join.
Definition

A *minimal imperfect graph* – a graph that is not perfect but all its induced subgraphs are.

A counterexample to SPGC: a Berge graph that is not perfect. A smallest counterexample must be minimal imperfect.

A smallest counterexample does not admit a join.

The Star Cutset Lemma (Chvátal, 1985)

No minimal imperfect graph has a star cutset.

This is only a *decomposition theorem*, there is no corresponding perfection-preserving composition.
Definition

A *skew partition* of G – a partition (A, B, C, D) of $V(G)$ such that all vertices of A are joined to all of B and there are no edges between C and D. The set $A \cup B$ forms a *skew cutset*.
Definition

A *skew partition* of G – a partition (A, B, C, D) of $V(G)$ such that all vertices of A are joined to all of B and there are no edges between C and D. The set $A \cup B$ forms a *skew cutset*.

Conjecture (Chvátal 1985)

No minimal imperfect graph admits a skew partition.
Theorem (Cornuéjols et. al. 2001)

A square-free Berge graph G satisfies at least one of the following statements:

1. G has a star cutset,
2. G admits a 2-join,
3. G is bipartite or is the line graph of a bipartite graph.
Theorem (Cornuéjols et. al. 2001)

A square-free Berge graph G satisfies at least one of the following statements:

1. G has a star cutset,
2. G admits a 2-join,
3. G is bipartite or is the line graph of a bipartite graph.

Conjecture (Cornuéjols et. al.)

A Berge graph G satisfies at least one of the following statements:

1. G or \overline{G} admits a 2-join,
2. G or \overline{G} has a skew partition,
3. G or \overline{G} is bipartite or is the line graph of a bipartite graph.
Conjecture (Seymour et. al.)

A Berge graph G satisfies at least one of the following statements:

1. G belongs to one of the basic classes, that is, either
 - G or \overline{G} is bipartite, or
 - G or \overline{G} is a line graph of a bipartite graph, or
 - G is a double-split graph;

2. G or \overline{G} admits a 2-join;

3. G has a balanced skew partition;